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About Me

Research Areas:

▶ ML/LLM compression and acceleration [CVPR’24, FPGA’20, HiPC’19, · · · ]
▶ model pruning
▶ low-rank compression
▶ hardware architecture design

▶ Efficient private ML [CVPR’24, PETS’24, TMC’24, TMLR’23, NeurIPS-FL’23, PETS’22, · · · ]
▶ differential privacy
▶ federated learning
▶ trusted execution environments

▶ LLM privacy, fairness and bias [NAACL’24, AAAI-ReLM’24]

▶ Stochastic optimization [TMLR’23, ICML’21 Workshop on Optimization]
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Privacy Breach in Machine Learning Pipeline

machine learning

deploymentinput output

train stage

deploy stage

- training data leak
- training data poisoning

breach through use

- model inversion
- member inference
- prompt injection
- prompt stealing - input leak

- model stealing
- model poisoning
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The Privacy-Utility-Complexity Trilemma

Complexity (MACs, time, ...)

Privacy (attack, information, ...)
Utility (acc, ...)
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The Privacy-Utility-Complexity Trilemma

Complexity

PrivacyUtility

- Standard Training

- Differential Privacy

- Homomorphic Encryption

- Trusted Execution
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The Privacy-Utility-Complexity Trilemma

Complexity

PrivacyUtility

This Thesis
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This Thesis

Background: Data Privacy Breach in Machine Learning
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Data Privacy Breach Overview

...

▷ cache/steal training data

eavesdrop transmission ◁ ▷ attack through models

▷ Case 1: Attackers obtain private data via unsafe transmission in

- user-cloud systems

- distributed systems

▷ Case 2: Public cloud servers may cache or steal private data▷ Case 3: Private data can be leaked via models:

- model inversion
- membership inference

- · · ·
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Data Privacy Breach Overview

Attack through Models: Model Inversion

generative

model

Optimize a generative model to

- mimic models’ output loss
- mimic model’s gradients

- mimic model’s predicted labels
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Data Privacy Breach Overview

Attack through Models: Membership Inference

is it used in training?

- examine predicted labels

- examine models’ loss
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This Thesis

Target Setup: Learning with Private and Public Environments
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Target Setup

Private Env

Public Env

Private

Public

▶ Private Env: strong privacy guarantee; increasing complexity, less computation efficient
▶ local clients
▶ trusted execution
▶ · · ·

▶ Public Env: no privacy guarantee; high computing performance
▶ Cloud GPUs
▶ · · ·
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Target Setup

A Generic Setup Seen in Many Scenarios

Distributed ML
Distribute model and data in distributed systems
- distributed training
- federated learning
- data parallelism

- ...

Split Learning

split model

Split model and data onto multiple platforms
- model splitting
- model parallelism

- ...

Trusted Execution

GPUs

TEEs
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Target Setup

The Central Problem To Be Solved

How to leverage both private and public environments to achieve:

- private training & inference

- high model utility

- fast execution
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This Thesis

Review: Relevant Works
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Relevant Works

▷ Split Learning

font layers back layers

split model

- protect raw data in local

- reduce computation from local

- not fully private
- not communication efficient

- fail against reconstruction attacksfront

layers
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Relevant Works

▷ Data Blinding

noise

generation

nonlinearprediction

blinding

unblinding

- offload complex ops

- fully private in cloud

- only for model inference

- heavy layerwise communication
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Relevant Works

▷ Data Obfuscation

noise

generation perturbing - completely offload computation

- no need for local computation

- degraded model utility

- not fully private
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The Key Argument in This Thesis:

Protecting data in private ML must be based on data,

and content-aware.
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This Thesis

This Thesis

Asymmetric Structure in Data (PETS’22)

3LegRace: Layer-Wise Asymmetric Data Decomposition (PETS’22)

Theoretical Foundations (PETS’22)

Delta: ML with Fully Asymmetric Data Flow(CVPR’24)
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Asymmetric Structure in Data

▷ Data in ML

Data Representations Are Redundant!!!
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Asymmetric Structure in Data

▷ Data Representation

image

Tensor: n × h × w

n

text

...

Tensor: n × l

n
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Asymmetric Structure in Data

▷ Redundancy Analysis

For data X ∈ Rn×k , obtain singular values as

X
SVD−−−→ U · diag(s) · V ∗

SVD-Entropy (PETS’22)

µX = − log
(∑n

j=1 s̄
2
j

)
s̄j =

sj∑n
i=1 si
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Asymmetric Structure in Data

▷ Redundancy Analysis

Sufficiency (PETS’22)

r = ⌈2µX ⌉ denote the number of components
that sufficiently approximate X :∑r

j=1 s
2
j∑n

j=1 s
2
j
≥ .97.
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Asymmetric Structure in Data

▷ Redundancy Analysis

s: [0.94, 0.05, 0.007] µ = 0.17
SVD r = 2
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3LegRace: Layer-Wise Asymmetric Data Decomposition

X linear op Y

X

Xmain =
∑r

j=1 Uj · X ′
j linear op

private

Ymain =
∑N

i=1 Xmain,i ⊛Wi

=
∑N

i=1

∑r
j=1 Ui ,jX

′
j ⊛Wi

=
∑r

j=1 X
′
j ⊛W ′

j

∇Wi
= Xi ⊛∇YL

=
∑r

j=1 Ui ,j · X ′
j ⊛∇YL

Xres = X − Xmainpublic linear op

add Y

main information & light computation

residual information & main computation
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3LegRace: Layer-Wise Asymmetric Data Decomposition

▷ Complete Flow

X

linear op: Xmain

inear op: Xres

linear op: Xmain

inear op: Xres

add activation · · · prediction

Xmain

Xres
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3LegRace: Layer-Wise Asymmetric Data Decomposition

Computation Complexity Memory Complexity
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Theoretical Foundations

Low-Rank Structure Is Preserved in Models

Low-Rank Structure in a 1× 1 Conv Layer (PETS’22)

Given input X ∈ Rn×h×w with SVD-entropy µX , and kernel
W ∈ Rm×n×1×1, the SVD-entropy of the output is
upper-bounded by:

µY ≤ log (⌈2µX ⌉).
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Theoretical Foundations

Low-Rank Structure Is Preserved in Models

Low-Rank Structure in a k × k Conv Layer (PETS’22)

Given input X ∈ Rn×h×w with SVD-entropy µX , and kernel
W ∈ Rm×n×k×k , the SVD-entropy of the output is
upper-bounded by:

µY ≤ log
(∑r

j=1 ⌈2µj ⌉
)
∼= µX + c(k).
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Theoretical Foundations

Low-Rank Structure Is Preserved in Models

Low-Rank Structure in a Batch Norm Layer (PETS’22)

Given input X ∈ Rn×h×w with SVD-entropy µX , the
SVD-entropy of the output is upper-bounded by:

µY ≤ log (⌈2µX ⌉+ 1).
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Performance

▷ Performance

Inference Time (on ImageNet)Train Time (on ImageNet)

Time Breakdowns
(on VGG16)
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Still Not Good Enough:

- Heavy layer-wise communication

- Formal privacy guarantee in public environments
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Delta: ML with Fully Asymmetric Data Flow

Private Env

Public Env

prediction

protection?

Private

Public
remove?

data flow

public flow

private flow

Delta
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Delta: ML with Fully Asymmetric Data Flow

Mbb DecomposeDecompose

Private (TEEs, local env)

IRmain

IRres

++

QuantQuant

noise

MmainMmain

lo
g
its

Mres

lo
g
its

IRquant
Public (cloud GPUs)

SoftMax Add Pred

no leakage

in backprop

IR
SVD−−−→ IRSVD main

DCT−−−→ IRmain

IRSVD res IRDCT res + IRres

few channels & smaller feature size

few info & large dimensionConv: c, k × kW

Conv: q, k × k

Conv: n, 1× 1

W (1)

W (2)

Theorem: By optimizing W 1,W 2, then
minW 1,W 2

∥∥Op(W ,X )− Op(W 1,W 2,X )
∥∥

= 0

IRquant(·) = BinQuant(IRnoisy(·)) =
{
0 IRnoisy(·) < 0

1 IRnoisy(·) ≥ 0

Theorem: Delta ensures that the perturbed residuals and operations in the

public environment satisfy (ϵ, δ)-DP given noise N (0, 2C2 · log (2/δ′)/ϵ′) given

sampling probability p, and ϵ = log (1 + p(eϵ
′ − 1)), δ = pδ′.

Mmain : otot(i) =
ezmain(i)+zres(i)∑
j=1 ezmain(j)+zres(j)

for i = 1, · · · , L

Mres : ores(i) =
ezres(i)∑
j=1 ezres(j)

for i = 1, · · · , L,
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Delta: ML with Fully Asymmetric Data Flow

▷ Experiment Highlights: Utility
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Delta: ML with Fully Asymmetric Data Flow

▷ Experiment Highlights: Utility

Delta: perturb IRres naive-DP: perturb IR

CIFAR-10 92.4% 69.6% (↓ −22.8)
CIFAR-100 71.4% 48.3% (↓ −23.1)
ImageNet 65.9% 34.4% (↓ −31.5)
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Delta: ML with Fully Asymmetric Data Flow

▷ Experiment Highlights: Complexity

MACs of the modules in Delta

Mbb+Mmain SVD DCT Mres

ResNet-18 48.3 M 0.52 M 0.26 M 547M
ResNet-34 437 M 1.6 M 0.7 M 3.5G

Running time with one single input

Priv-only 3LegRace Delta

Train (ms/speedup) 1372 237 (6×) 62 (22×)
Inference (ms/speedup) 510 95 (5×) 20 (25×)
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MACs of the modules in Delta
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Delta: ML with Fully Asymmetric Data Flow

▷ Experiment Highlights: Privacy Protection

Against model inversion attack with ResNet-18 [SecretRevealer, CVPR’20]

Original samples Reconstruction (no noise) Reconstruction (ϵ = 1)
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Potential in Language Models

Internal activations exhibit highly low-rank structure [arXiv’24]

low-rank approximation: X
SVD−−→ Xlr = U(:, 1 : r) · S(1 : r , 1 : r) · V (1 : r , :)
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▶ input sequences can be approximated w. a few principal components

▶ long sequences exhibit more low-rank structure
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Potential in Language Models

An example · · ·

Large Language Models are foundational machine
learning models that use deep learning algorithms
to process and understand natural language. These
models are trained on massive amounts of text data
to learn patterns and entity relationships in the lan-
guage. Large Language Models can perform many
types of language tasks, such as translating lan-
guages, analyzing sentiments, chatbot conversations,
and more. They can understand complex textual
data, identify entities and relationships between them,
and generate new text that is coherent and gram-
matically accurate.

(a) Original text

Large Language Models are foundational machine
learning models that use deep learning algorithms
to process and understand natural language. These
models are trained on massive amounts of text data
to learn patterns and entity relationships in the lan-
guage. Large Language Models can perform many
types of language tasks, such as translating lan-
guages, analyzing sentiments, chatbot conversations,
and more. They can understand complex textual
data, identify entities and relationships between them,
and generate new text that are coherent and gram-
matically accurate.

(b) approximated text with 20% principal vectors
from Word2Vec.
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Conclude: The Privacy-Utility-Complexity Trilemma

Complexity

PrivacyUtility

This Thesis
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