
Efficient ML: Hardware to Algorithm

Yue (Julien) Niu
PhD candidate

Dept. of Electrical and Computer Engineering
University of Southern California

1 / 39

About Me

BS at NPU MS at NPU PhD at USC

2015 2017 2018 2021 2022 2024

Internship @Tinghua Univ
- ML compression and acceleration

Internship @Amazon Alexa
- Model compression using KD

Internship @Amazon Alexa
- Model perf estimation

2 / 39

About Me

BS at NPU MS at NPU PhD at USC

2015 2017 2018 2021 2022 2024

Internship @Tinghua Univ
- ML compression and acceleration

Internship @Amazon Alexa
- Model compression using KD

Internship @Amazon Alexa
- Model perf estimation

2 / 39

About Me

Research Areas:

▶ ML/LLM compression and acceleration [CVPR’24, ACL’24 (under review), FPGA’20, · · ·]
▶ model pruning
▶ low-rank compression
▶ hardware architecture design

▶ Efficient privacy-preserving ML [CVPR’24, PETS’24, TMLR’23, NeurIPS-FL’23, PETS’22, · · ·]
▶ differential privacy
▶ federated learning
▶ trusted execution environments

▶ LLM privacy, fairness and bias [NAACL’24, AAAI-ReLM’24]

▶ Stochastic optimization [TMLR’23, ICML’21 Workshop on Optimization]

3 / 39

This talk

1 ML Acceleration: Hardware Design (brief)

2 Efficient Transformer: Self-Attention with Reduced Complexity

3 Efficient Learning: Model Design with Low-Rank Input

4 / 39

Efficiency Is Always the Goal

Source: Samsung, AI Vision

Fast,
Accurate,

Energy-Efficient

5 / 39

Efficiency Is Always the Goal

Source: Samsung, AI Vision

Fast,
Accurate,

Energy-Efficient

5 / 39

Efficiency Is Challenging

before 2017

after 2017

6 / 39

Efficiency Is Challenging

before 2017 after 2017

6 / 39

This talk

1 ML Acceleration: Hardware Design (brief)

2 Efficient Transformer: Self-Attention with Reduced Complexity

3 Efficient Learning: Model Design with Low-Rank Input

7 / 39

Overview on ML Acceleration

ML Accelerator on FPGA

- 2017 - 2018 at Tsinghua

- low-rank CNN models

- 16-bit float point

- Tiling-based conv

- 200MHz working frequency

- low latency (200ms)

- Verilog, C++

General ML Accelerator

- 2018 at Tsinghua Univ

- generic module
* conv, matmul, ReLU, · · ·

- layer fusing
* conv-relu
* conv-relu-pooling

- Tiling-based module

- overlap compute, memory
- automatic model conversion
- Caffe, C++, Verilog

Sparse ML Accelerator

- 2020 at USC

- sparse DNN inference

- frequency-domain conv

- sparse model

- sparsity-aware training

- high model acc

- high throughput

- 16-bit fixed point

- Tensorflow, Verilog

8 / 39

Overview on ML Acceleration

Demo available at: https://www.youtube.com/watch?v=eFW8OTIur38

Accelerator

9 / 39

This talk

1 ML Acceleration: Hardware Design (brief)

2 Efficient Transformer: Self-Attention with Reduced Complexity

3 Efficient Learning: Model Design with Low-Rank Input

10 / 39

ATP: High-level Overview [ACL’24 under review]

ATP: reduce self-attention complexity from quadratic to linear.

i-th
Q
u
ery:

q
∈

R
d
′

K1

...

KL

Key

A1

...

AL

Attention

V1 · · · VL

Value

+

Query output

Standard self-attention.

i-th
Q
u
ery:

q
∈

R
d
′

K ′
1

...

K ′
r

Principal Key

A′
1

...

A′
r

Attention

V ′
1 · · · V ′

r

Principal Value

+

Query output

Low-rank self-attention.

ATP Paper Link

11 / 39

https://arxiv.org/pdf/2403.02352.pdf

Problem and Background

LLMs/Transformers are bottlenecked by self-attention.

▶ For a sequence with L tokens, self-attention complexity is O(L2).

12 / 39

Problem and Background

LLMs/Transformers are bottlenecked by self-attention.

▶ For a sequence with L tokens, self-attention complexity is O(L2).

12 / 39

Problem and Background

LLMs/Transformers are bottlenecked by self-attention.

layer 1 head 1 head 2 head 3 · · ·

layer 2 head 1 head 2 head 3 · · ·

layer 3

head 1 head 2 head 3 · · ·

...

13 / 39

Problem and Background

LLMs/Transformers are bottlenecked by self-attention.

layer 1 head 1 head 2 head 3 · · ·

layer 2 head 1 head 2 head 3 · · ·

layer 3

head 1 head 2 head 3 · · ·

...

13 / 39

Problem and Background

Running time increases quatratically with the sequence length.

512 1024 2048 4096 8192

.2

.4

.6

.8

sequence length

n
or
m
a
li
ze
d
ti
m
e

standard self-attention (Llama-2)

14 / 39

Related Works

Quantization

Weights/Activations/KV

Cache: FP32/FP16

Weights/Activations/KV

Cache: INT8/INT4

▶ reduce memory footprints;

▶ reduce computation complexity, friendly to
hardware;

▶ complexity still scales quadratically;

▶ calibration needed for activation quantization

Sparse Attention

▶ reduce more redundancy

▶ good model utility

▶ sparse computation, not hardware-friendly

▶ longer running time
▶ irregular compute flow
▶ bad locality

Attention w. Small Window

▶ support long input sequences

▶ truncating error due to small window

▶ unable to model long semantic relationships

15 / 39

Related Works

Quantization

Weights/Activations/KV

Cache: FP32/FP16

Weights/Activations/KV

Cache: INT8/INT4

▶ reduce memory footprints;

▶ reduce computation complexity, friendly to
hardware;

▶ complexity still scales quadratically;

▶ calibration needed for activation quantization

Sparse Attention

▶ reduce more redundancy

▶ good model utility

▶ sparse computation, not hardware-friendly

▶ longer running time
▶ irregular compute flow
▶ bad locality

Attention w. Small Window

▶ support long input sequences

▶ truncating error due to small window

▶ unable to model long semantic relationships

15 / 39

Related Works

Quantization

Weights/Activations/KV

Cache: FP32/FP16

Weights/Activations/KV

Cache: INT8/INT4

▶ reduce memory footprints;

▶ reduce computation complexity, friendly to
hardware;

▶ complexity still scales quadratically;

▶ calibration needed for activation quantization

Sparse Attention

▶ reduce more redundancy

▶ good model utility

▶ sparse computation, not hardware-friendly

▶ longer running time
▶ irregular compute flow
▶ bad locality

Attention w. Small Window

▶ support long input sequences

▶ truncating error due to small window

▶ unable to model long semantic relationships

15 / 39

A Key Observation

Internal activations exhibit highly low-rank structure

tokenizers

my dog likes playing

my dog likes play #ing

embedding

X

16 / 39

A Key Observation

Internal activations exhibit highly low-rank structure

tokenizers

my dog likes playing

my dog likes play #ing

embedding

X

16 / 39

A Key Observation

Internal activations exhibit highly low-rank structure

low-rank approximation: X
SVD−−→ Xlr = U(:, 1 : r) · S(1 : r , 1 : r) · V (1 : r , :)

0.2 0.3 0.4 0.5

10

20

30

40

components needed (%, on MMLU dataset)

p
ro
b
d
en

si
ty

L ∈ [0, 300]

L ∈ [300, 600]

L ∈ [600,]

▶ input sequences can be approximated w. a few principal components

▶ long sequences exhibit more low-rank structure

17 / 39

A Key Observation

Internal activations exhibit highly low-rank structure

low-rank approximation: X
SVD−−→ Xlr = U(:, 1 : r) · S(1 : r , 1 : r) · V (1 : r , :)

0.2 0.3 0.4 0.5

10

20

30

40

components needed (%, on MMLU dataset)

p
ro
b
d
en

si
ty

L ∈ [0, 300]

L ∈ [300, 600]

L ∈ [600,]

▶ input sequences can be approximated w. a few principal components

▶ long sequences exhibit more low-rank structure

17 / 39

A Key Observation

An example · · ·

Large Language Models are foundational machine
learning models that use deep learning algorithms
to process and understand natural language. These
models are trained on massive amounts of text data
to learn patterns and entity relationships in the lan-
guage. Large Language Models can perform many
types of language tasks, such as translating lan-
guages, analyzing sentiments, chatbot conversations,
and more. They can understand complex textual
data, identify entities and relationships between them,
and generate new text that is coherent and gram-
matically accurate.

(a) Original text

Large Language Models are foundational machine
learning models that use deep learning algorithms
to process and understand natural language. These
models are trained on massive amounts of text data
to learn patterns and entity relationships in the lan-
guage. Large Language Models can perform many
types of language tasks, such as translating lan-
guages, analyzing sentiments, chatbot conversations,
and more. They can understand complex textual
data, identify entities and relationships between them,
and generate new text that are coherent and gram-
matically accurate.

(b) approximated text with 20% principal vectors
from Word2Vec.

18 / 39

ATP: Low-Rank Self-Attention

How to leverage the low-rank structure of inputs in self-attention
to reduce quadratic complexity?

19 / 39

ATP: Low-Rank Self-Attention

Standard Self-Attention Self-Attention w/ Low-Rank Inputs

Input:

Query:

Key:

Value:

Att:

X ∈ RL×d

Q = X ·WQ

K = X ·WK

V = X ·W V

A = Softmax(Q · K∗) · V

X = U · X ′, X ′ ∈ Rr×d

Q = U · X ′ ·WQ

K = U · X ′ ·WK

V = U · X ′ ·W V

A =???

20 / 39

ATP: Low-Rank Self-Attention

Standard Self-Attention Self-Attention w/ Low-Rank Inputs

Input:

Query:

Key:

Value:

Att:

X ∈ RL×d

Q = X ·WQ

K = X ·WK

V = X ·W V

A = Softmax(Q · K∗) · V

X = U · X ′, X ′ ∈ Rr×d

Q = U · X ′ ·WQ

K = U · X ′ ·WK

V = U · X ′ ·W V

A =???

20 / 39

ATP: Low-Rank Self-Attention

Standard Self-Attention Self-Attention w/ Low-Rank Inputs

Input:

Query:

Key:

Value:

Att:

X ∈ RL×d

Q = X ·WQ

K = X ·WK

V = X ·W V

A = Softmax(Q · K∗) · V

X = U · X ′, X ′ ∈ Rr×d

Q = U · X ′ ·WQ

K = U · X ′ ·WK

V = U · X ′ ·W V

A =???

20 / 39

ATP: Low-Rank Self-Attention

Low-Rank Self-Attention

Input: X = U · X ′ X ′ ∈ R r×d

Query: Q = U · X ′ ·WQ = U · Q ′ Q ′ ∈ R r×d ′

Key: K = U · X ′ ·WK = U · K ′ K ′ ∈ R r×d ′

Value: V = U · X ′ ·W V = U · V ′ V ′ ∈ R r×d ′

Attention: exp(q · KT) · V

= exp(q · K ′T · UT) · U · V ′

≃ 1 · U · V ′ + q · K ′T · UT · U · V ′ (Taylor expansion)

= (1 · U + q · K ′T) · V ′

= A′ · V ′ ← convert to low-rank attention

21 / 39

ATP: Low-Rank Self-Attention

Low-Rank Self-Attention

Input: X = U · X ′ X ′ ∈ R r×d

Query: Q = U · X ′ ·WQ = U · Q ′ Q ′ ∈ R r×d ′

Key: K = U · X ′ ·WK = U · K ′ K ′ ∈ R r×d ′

Value: V = U · X ′ ·W V = U · V ′ V ′ ∈ R r×d ′

Attention: exp(q · KT) · V

= exp(q · K ′T · UT) · U · V ′

≃ 1 · U · V ′ + q · K ′T · UT · U · V ′ (Taylor expansion)

= (1 · U + q · K ′T) · V ′

= A′ · V ′ ← convert to low-rank attention

21 / 39

ATP: Low-Rank Self-Attention

i-th
Q
u
ery:

q
∈

R
d
′

K1

...

KL

Key

A1

...

AL

Attention

V1 · · · VL

Value

+

Query output

Standard self-attention.
i-th

Q
u
ery:

q
∈

R
d
′

K ′
1

...

K ′
r

Principal Key

A′
1

...

A′
r

Attention

V ′
1 · · · V ′

r

Principal Value

+

Query output

Low-rank self-attention.

Self-Attention Complexity:
O(L2)→ O(r · L)

22 / 39

Experiment Highlights

Models

BERT Llama2-7B Llama2-13B

att layers 12 32 40
heads/layer 12 32 40
head dim 64 128 128

Datasets

BERT Llama2-7B Llama2-13B

SST2 MMLU MMLU
Squad BoolQ BoolQ
IMDB

23 / 39

Experiment Highlights

Model Finetuning Procedure

Pretrained Model

Model w/ LR Self-Att

Fine-tuning

- load model in 4-bit quantized value

- load activations in 16-bit FP

- perform computation in 16-bit FP

- LoRA update w/ 16-bit FP

24 / 39

Experiment Highlights

Model Finetuning Procedure

Pretrained Model

Model w/ LR Self-Att

Fine-tuning

- load model in 4-bit quantized value

- load activations in 16-bit FP

- perform computation in 16-bit FP

- LoRA update w/ 16-bit FP

24 / 39

Experiment Highlights

Actual Running Time (test on LLama-2/7B)

512 1024 2048 4096 8192

.2

.4

.6

.8

sequence length (L) with r = 128

n
or
m
al
iz
ed

ti
m
e

low-rank

standard

25 / 39

Experiment Highlights

Model Accuracy on MMLU

STEM humanities social other

0.3

0.4

0.5

0.25

A
cc

Orig 1/2 1/3 1/4 (principal keys)

(a) Llama2-7B.

STEM humanities social other

0.3
0.4
0.5
0.6

0.25

A
cc

(b) Llama2-13B.

26 / 39

This talk

1 ML Acceleration: Hardware Design (brief)

2 Efficient Transformer: Self-Attention with Reduced Complexity

3 Efficient Learning: Model Design with Low-Rank Input

27 / 39

Delta: High-level Overview [CVPR’24]

Low-rank activations enable small-model design

Private

Env

Public

Env

Private

Public

Problem Setup

Mbb Decompose Mmain

lo
g
its Add SoftMax Pred

IRmain

+

Quant

Mres

lo
g
its

noise

IRres

IRquant

Private (TEEs, local env)

Public (cloud GPUs)

Method Overview

Delta Paper Link

28 / 39

https://arxiv.org/abs/2312.05264

Critical Challenges in Private ML

▶ computation/memory/communication bottleneck in private environments

▶ balance privacy leakage in public environments

data attack

▶ The utility-privacy-complexity trilemma

Complexity

Privacy

Utility

29 / 39

Critical Challenges in Private ML

▶ computation/memory/communication bottleneck in private environments

▶ balance privacy leakage in public environments

data attack

▶ The utility-privacy-complexity trilemma

Complexity

Privacy

Utility

29 / 39

Critical Challenges in Private ML

▶ computation/memory/communication bottleneck in private environments

▶ balance privacy leakage in public environments

data attack

▶ The utility-privacy-complexity trilemma

Complexity

Privacy

Utility

29 / 39

Privacy-Preserving ML Approaches

(Naive) DP-based ML

+DP noise

▶ Provable guarantee

▶ Severe accuracy drop

Crypto-based ML

encrypt

▶ Strong protection

▶ High complexity

Secure Enclaves

secure env.

▶ Hardware security

▶ Long running time

30 / 39

Privacy-Preserving ML Approaches

(Naive) DP-based ML

+DP noise

▶ Provable guarantee

▶ Severe accuracy drop

Crypto-based ML

encrypt

▶ Strong protection

▶ High complexity

Secure Enclaves

secure env.

▶ Hardware security

▶ Long running time

30 / 39

Privacy-Preserving ML Approaches

(Naive) DP-based ML

+DP noise

▶ Provable guarantee

▶ Severe accuracy drop

Crypto-based ML

encrypt

▶ Strong protection

▶ High complexity

Secure Enclaves

secure env.

▶ Hardware security

▶ Long running time

30 / 39

Privacy-Preserving ML Approaches

(Naive) DP-based ML

+DP noise

▶ Provable guarantee

▶ Severe accuracy drop

Crypto-based ML

encrypt

▶ Strong protection

▶ High complexity

Secure Enclaves

secure env.

▶ Hardware security

▶ Long running time

30 / 39

Delta: Private Learning with Asymmetric Flows

What does Delta do?

▶ Leverage both private (client-side, TEEs, ...) and public (cloud) environments.

▶ Offload as much computation to public envs as possible, but prevent minimal privacy leakage.

▶ Preserve as much information in private env as possible, but introduce minimal complexity for training and
inference.

31 / 39

Delta: Private Learning with Asymmetric Flows

SVD Approximation Error

12.5% 25% 37.5% 50%

0

0.1 ∥X−Xlr∥
∥X∥

Fraction of principal channels in Xlr

E
rr
or

X
SVD−−→ U, s,V

Xlr =
r∑

i=1

si · Ui · V ∗
i

DCT Approximation Error

8% 18% 32% 50%

0

0.1 ∥X−Xlf∥
∥X∥

Fraction of low-freq components in Xlf

E
rr
or

X
DCT−−→ C

Xlf =
r∑

i=1

IDCT(C(i))

32 / 39

Delta: Private Learning with Asymmetric Flows

SVD Approximation Error

12.5% 25% 37.5% 50%

0

0.1 ∥X−Xlr∥
∥X∥

Fraction of principal channels in Xlr

E
rr
or

X
SVD−−→ U, s,V

Xlr =
r∑

i=1

si · Ui · V ∗
i

DCT Approximation Error

8% 18% 32% 50%

0

0.1 ∥X−Xlf∥
∥X∥

Fraction of low-freq components in Xlf

E
rr
or

X
DCT−−→ C

Xlf =
r∑

i=1

IDCT(C(i))

32 / 39

Delta: Private Learning with Asymmetric Flows

Asymmetric data decomposition

Mbb Decompose
IRmain

IRres

IR
SVD−−−→ IRSVD main

DCT−−−→ IRmain

IRSVD res IRDCT res + IRres

few channels & smaller feature size

few info & large dimension

▶ SVD: asymmetric decomposition along channel dimension

▶ DCT: asymmetric decomposition along spatial dimension

33 / 39

Delta: Private Learning with Asymmetric Flows

Asymmetric data decomposition

Mbb Decompose
IRmain

IRres

IR
SVD−−−→ IRSVD main

DCT−−−→ IRmain

IRSVD res IRDCT res + IRres

few channels & smaller feature size

few info & large dimension

▶ SVD: asymmetric decomposition along channel dimension

▶ DCT: asymmetric decomposition along spatial dimension

33 / 39

Delta: Private Learning with Asymmetric Flows

Efficient model design with low-dimensional data

Mbb Decompose Mmain
IRmain

IRres

Conv:

c, k × k

Input X : rank r

Output: rank q

W

Conv:

q, k × k

Conv:

n, 1 × 1

Input X : rank r

Output: rank q

W (1)

W (2)

original layer low-rank layer

Theorem: By optimizing W 1,W 2, we
can achieve:

min
W 1,W 2

∥∥Op(W ,X)− Op(W 1,W 2,X)
∥∥

= 0

NOT low-rank model compression!

34 / 39

Delta: Private Learning with Asymmetric Flows

Efficient model design with low-dimensional data

Mbb Decompose Mmain
IRmain

IRres

Conv:

c, k × k

Input X : rank r

Output: rank q

W

Conv:

q, k × k

Conv:

n, 1 × 1

Input X : rank r

Output: rank q

W (1)

W (2)

original layer low-rank layer

Theorem: By optimizing W 1,W 2, we
can achieve:

min
W 1,W 2

∥∥Op(W ,X)− Op(W 1,W 2,X)
∥∥

= 0

NOT low-rank model compression!

34 / 39

Delta: Private Learning with Asymmetric Flows

Efficient model design with low-dimensional data

Mbb Decompose Mmain
IRmain

IRres

Conv:

c, k × k

Input X : rank r

Output: rank q

W

Conv:

q, k × k

Conv:

n, 1 × 1

Input X : rank r

Output: rank q

W (1)

W (2)

original layer low-rank layer

Theorem: By optimizing W 1,W 2, we
can achieve:

min
W 1,W 2

∥∥Op(W ,X)− Op(W 1,W 2,X)
∥∥

= 0

NOT low-rank model compression!

34 / 39

Delta: Private Learning with Asymmetric Flows

Minimize communication and privacy leakage with random binary quantization

Mbb Decompose Mmain
IRmain

+

Quant

Mres

noise
IRres

IRquant

IRquant(·) = BinQuant(IRnoisy(·)) =
{

0 IRnoisy(·) < 0

1 IRnoisy(·) ≥ 0

35 / 39

Delta: Private Learning with Asymmetric Flows

Minimize communication and privacy leakage with random binary quantization

Mbb Decompose Mmain
IRmain

+

Quant

Mres

noise
IRres

IRquant

IRquant(·) = BinQuant(IRnoisy(·)) =
{

0 IRnoisy(·) < 0

1 IRnoisy(·) ≥ 0

35 / 39

Delta: Private Learning with Asymmetric Flows

The full picture

Private

Env

Public

Env

Private

Public

Problem Setup

Mbb Decompose Mmain

lo
g
its Add SoftMax Pred

IRmain

+

Quant

Mres

lo
g
its

noise

IRres

IRquant

Private (TEEs, local env)

Public (cloud GPUs)

Method Overview

▶ Asymmetric data decomposition: decouple information from computation

▶ Efficient model design: reduce complexity in private environments

▶ Random binary quantization: reduce communication costs

36 / 39

Experiment Highlights

Model Utility

Mmain Mmain,res
(ϵ = 1)

Mmain,res
(ϵ = 10)

Mmain,res
(ϵ = 20)

Mmain,res
(ϵ = ∞)

Orig

64

66

68

70
ResNet-18 on ImageNet

V
a
l
A
cc
(%

)

MAC of each module

Mbb+Mmain SVD DCT Mres

ResNet-18 48.3 M 0.52 M 0.26 M 547M
ResNet-34 437 M 1.6 M 0.7 M 3.5G

37 / 39

Experiment Highlights

Model Utility

Mmain Mmain,res
(ϵ = 1)

Mmain,res
(ϵ = 10)

Mmain,res
(ϵ = 20)

Mmain,res
(ϵ = ∞)

Orig

64

66

68

70
ResNet-18 on ImageNet

V
a
l
A
cc
(%

)

MAC of each module

Mbb+Mmain SVD DCT Mres

ResNet-18 48.3 M 0.52 M 0.26 M 547M
ResNet-34 437 M 1.6 M 0.7 M 3.5G

37 / 39

Experiment Highlights

Training and Inference Speedup

Priv-only 3LegRace Slalom Delta

Train (ms/speedup) 1372 237 (6×) - 62 (22×)
Inference (ms/speedup) 510 95 (5×) 84 (6×) 20 (25×)

3LegRace [Niu, et al, PETs 2022]: layer-wise feature decomposition on linear layers
Slalom [Tramer, et al, ICLR 2019]: layer-wise computation distribution on linear layers

▶ Significant speedup compared to solely using private envs

▶ Faster compared to baselines due to reduced communication

38 / 39

Summary

ML efficiency is achieved from: efficient hardware, software and algorithm optimization

Hardware

(accelerator, · · ·)

Software

(TFLite, MLIR, · · ·)
Algorithm

(quantization, low-rank, · · ·)

39 / 39

	ML Acceleration: Hardware Design (brief)
	Efficient Transformer: Self-Attention with Reduced Complexity
	Efficient Learning: Model Design with Low-Rank Input

	anm1:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

